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Abstract. Acoustic phonon modes of a free-standing rectangular quantum wire composed
of cubic crystals are theoretically investigated using an algorithm developed to analyse data
from resonant ultrasound spectroscopy. The normal phonon modes are classified according
to their spatial symmetries into a compressional mode termed the dilatational mode and non-
compressional modes referred to as the flexural, torsional, and shear modes. The formalism
that we present is quite general and can be applied to wires of any cubic material. As an
example, the dispersion relations are obtained for square and rectangular wires of GaAs, taking
into account the anisotropic elasticity of the material. The dispersion curves for a rectangular
wire are compared with those of the approximate hybrid modes referred to as the thickness
and width modes, and the validity of the modes is discussed. The existence of edge modes is
confirmed by examining the spatial distribution of displacement vectors.

1. Introduction

A number of theoretical and experimental studies have investigated transport phenomena in
nanometre-scale wires at temperatures where the acoustic phonons are expected to show
reduced-dimensional behaviour. Such behaviour is anticipated for wires whose cross-
sectional dimension is less than the phonon phase-coherence length. On this length
scale, phonon confinement will result in non-linear dispersion and acoustic subbands at
wavevectors close to the Brillouin zone centre [1]. The effects of confinement on the phonon
mean free path [2], thermal conductivity [3, 4], and phonon localization [5] have received
some attention. Other work has addressed electron transport in the presence of phonon
confinement. In experiments on semiconductor wires, no confinement-related effects have
been found [6]. In other experiments, the resistance of metal wires was observed to change
as electron energy relaxation to confined modes became possible [7, 8]. An issue related
to these studies is the nature of the phonon spectrum near the zone centre. Of particular
importance to wires of rectangular cross section is an understanding of edge modes, which
are expected to become increasingly important as the cross-sectional dimensions of a wire
are reduced.

Theoretical work on phonons in quasi-one-dimensional (Q1D) quantum wires has
advanced relatively slowly, in contrast to the case for electrons in quantum wires or
that of phonons in higher-dimensional systems such as superlattice structures. One of
the main reasons for this is that even for rectangular wires the longitudinal acoustic (LA)
and transverse acoustic (TA) wave coupling that occurs at the wire surface makes it difficult
to derive the normal phonon modes and their spectra analytically. Previous theoretical
approaches have been limited to specific geometries, such as circular or very flat rectangular
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wires of elastically isotropic materials, and have provided only a qualitative description of
the phonon dispersion in realizable quantum wires. Since the combination of the LA and TA
waves depends on the geometry, frequency, and wavevector [9], it is difficult to determine
the LA wave component using approximate methods. This problem has made estimates
of the deformation potential scattering of electrons in wires uncertain, and has shown that
to model the low-energy electron scattering rates for nanostructures accurately, a more
complete treatment of the confined acoustic modes is required [10, 11].

Recently, an accurate method was developed in resonant ultrasound spectroscopy [12–
14] for deriving the free vibrational modes of inhomogeneous objects. This method can treat
free vibrations of a general anisotropic object with arbitrary shape as well as arbitrary mass
density variation, by expanding the displacement vectors in terms of a set of basis functions
that are products of powers of the Cartesian coordinates, which is called thexyz-algorithm
[13]. Considering the translational symmetry of wires along the wire axis, vibrations of
free-standing wires reduce to free vibrations of flakes, which can be analysed by means
of the method. Thus thexyz-algorithm is found to be useful for the normal modes of
free-standing wires of anisotropic materials with arbitrary-shape cross section, on suitably
choosing the basis functions of the displacement vectors.

In this paper, we show that the acoustic phonon modes of Q1D wires can be precisely
obtained by thexyz-algorithm. The plan of this paper is as follows. In section 2, we outline
the method and apply it to a rectangular wire of a cubic material. The normal phonon
modes are classified into dilatational, flexural, torsional, and shear modes, according to the
symmetries of the modes. In section 3, we apply the results of section 2 to wires of the cubic
semiconductor GaAs. We have chosen this material as an example because its normal modes
can be compared with previously published calculations [10]. We note, however, that our
approach is quite general, and can be applied to wires of any cubic material. We determine
the dispersion curves and show their dependence on the cross-sectional aspect ratio. We
also compare the results with previous approximate hybrid modes, termed the thickness and
width modes [15, 16], calculated assuming separable boundary conditions. In section 4, we
examine the spatial distribution of displacements, and show the existence of edge modes
having large amplitudes at the wire corners. The normalization condition is applied to the
acoustic phonon modes of rectangular wires, and the phonon field is formulated in section 5.
A summary is given in section 6.

2. The method

In this section, we derive an eigenvalue equation for the acoustic phonon modes of a free-
standing wire based on the variational principle. The Lagrangian of the system is given in
terms of the displacement componentsui and angular frequencyω, by

L =
∫
V

[
ρ

2
ω2uiui − 1

2
Cijk` ∂iuj ∂ku`

]
dV (1)

whereρ andCijk` are the mass density and stiffness tensor of the constituent material.V

denotes the volume of the wire. The variation of the LagrangianδL due to the change of
the displacement componentsui → ui + δui yields

δL =
∫
V

[
ρω2ui + ∂jσji

]
δui dV −

∫
S

njσji δui dS (2)

wherenj is the j th component of the unit vector normal to the wire surfaceS, andσij is
the stress tensor given by

σij = Cijk` ∂ku`. (3)
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For a free-standing wire, the stress field vanishes at the wire surface, i.e.

σijnj
∣∣
S
= 0. (4)

Considering the boundary condition (4) and postulating that the Lagrangian has a minimum
with respect toui , we obtain the following elastic wave equation:

ρω2ui + ∂`σ`i = 0. (5)

Expanding the displacement componentsui in terms of a complete set of functions{8λ} as
follows:

ui = χiλ8λ (6)

and substituting equation (6) into (5), we obtain

χiλρω
28λ + χ`λCijk` ∂j ∂k8λ = 0. (7)

Multiplying equation (7) by8∗λ′ and integrating over the volumeV , we get the following
generalized eigenvalue equation:

χiλρω
2
∫
V

8∗λ′8λ dV − χ`λCijk`
∫
V

∂j8
∗
λ′ ∂k8λ dV = 0. (8)

Defining the matrix elementsEiλ′;jλ and0iλ′;`λ by

Eiλ′;jλ = δi,j ρ
V

∫
V

8∗λ′8λ dV (9)

and

0iλ′;`λ = Cijk`

V

∫
V

∂j8
∗
λ′ ∂k8λ dV (10)

equation (8) can be expressed in a matrix form as[
ω2E− Γ

]
χ = 0. (11)

Normal phonon modes are obtained by solving equation (11). The eigenvaluesω2
J of

equation (11) give the normal-mode spectra, and the corresponding displacement vectoruJ
is given by equation (6), where the coefficientsχiλ are substituted for with the eigenvector
componentsχJ,iλ. Here the subscriptJ denotes a set of quantum numbers used to specify
the normal modes.

The eigenvalue equation (11) is applied to a Q1D wire of elastically anisotropic materials
with arbitrary shape of the cross section. In what follows, we study acoustic phonon modes
in a rectangular wire composed of cubic crystals, by specifying a set of basis functions.
Taking the wire axis to be thez-direction, the simplest basis functions are powers of the
Cartesian coordinates [13] in the lateral directions, such as

8λ(x, y, z) =
(

2x

W

)m(2y

H

)n
eiqz (12)

where λ = (m, n), and q is the longitudinal wavevector of the acoustic phonon modes
along the wire axis.W andH are the thicknesses of the wire in thex- andy-directions,
respectively, with the origin being the wire axis at the centre of the cross section.

Substituting equation (12) into (9) and (10) yields the matrix elements

Eiλ′;jλ = δi,j ρF (m+m′; n+ n′) (13)

where

F(m; n) = δm,evenδn,even
1

(m+ 1)(n+ 1)
(14)
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Figure 1. Dispersion curves of the dilatational phonon mode of a GaAs square wire with cross-
sectional dimensions 100̊A × 100 Å. The solid and chain lines denote the dispersion curves
of the mode with the vibrational patterns (a) and (b) in figure 4, respectively—see later. The
dashed lines are the dispersion curves of the bulk LA and TA waves along the [001] direction.
The dotted line is the dispersion curve of a longitudinal wave in a rod in the long-wavelength
limit. The material parameters used are quoted from reference [21].

and0iλ′;`λ given in appendix A.
We note here that another complete set of functions—products of the Legendre

polynomials—are also useful as basis functions. The matrixE becomes diagonal in this
case, since the Legendre polynomials are orthogonal, and equation (11) becomes the usual
eigenvalue equation. Although the basis functions (12) are not orthogonal, they are linearly
independent, and are related to the Legendre polynomials by a certain linear transformation.
Hence, expanding the displacement in terms of the basis functions (12) is essentially
equivalent to expanding them in terms of the Legendre polynomials. One advantage of
using the basis functions (12) is the straightforward evaluation of theΓ and E matrix
elements, irrespective of the wire’s cross-sectional shape. Thus this method can deal with
wires with a variety of cross-sectional shapes. Another advantage is that the basis functions
(12) are useful for the classification of the phonon modes, as discussed below.

Table 1. A set of parities of the displacement components.

Phonon mode ux uy uz

I (−,+) (+,−) (+,+)
II (−,−) (+,+) (+,−)
III (+,+) (−,−) (−,+)
IV (+,−) (−,+) (−,−)

The basis functions have even or odd parity under inversion of thex- and/or y-
coordinates. On expressing the parity of the basis function (12) by(µ, ν), whereµ = (−1)m

andν = (−1)n, the basis functions are classified into four parity groups, i.e.(+,+), (+,−),
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Figure 2. Dispersion curves of the flexural phonon modes of a GaAs square wire with cross-
sectional dimensions 100̊A × 100 Å. The dispersion relations of the two flexural modes are
degenerate for a square wire. The solid lines denote the dispersion curves, and the dashed lines
are the dispersion curves of the bulk LA and TA waves along the [001] direction. The dotted
line denotes the dispersion curve of a bending wave in a rod, showing the parabolic dispersion
relation in the long-wavelength limit.

(−,+), and(−,−). The diagonal matrix elements0iλ′;iλ connect basis functions belonging
to the same parity group. In contrast, the off-diagonal matrix elements of0iλ′;jλ connect
basis functions with different parity. Thereby, each displacement componentui consists of a
set of basis functions belonging to one of the parity groups, and the displacement components
ux and uy connected to theuz with the parity (µ, ν) have parity(−µ, ν) and (µ,−ν),
respectively. Normal phonon modes are described by combinations of these displacement
components with different parities, and are classified into four kinds of vibrational mode
with different spatial symmetries (see table 1). The displacement components for each
mode, which we numbered I–IV for convenience, are given in appendix B.

We note that mode I is the dilatational mode, modes II and III are flexural modes,
and mode IV is the torsional or shear mode, as can be understood from table 1 and
equations (B1c), (B2c), (B3c), and (B4c). By considering the change of cross-sectional
area for these modes, it is seen that only the dilatational mode is a compressional mode.

Although a large number of basis functions are needed for the exact expression of
normal modes, a small number of basis functions are sufficient for the expression as far as
low-frequency normal modes are concerned. The size of the truncated set of basis functions
is limited by the maximum powerN of the basis functions in equations (B1c), (B2c), (B3c),
and (B4c), which is determined by studying the convergence of the dispersion relationships
for the frequency range and cross-sectional dimensions of interest.

3. Dispersion relations

Figures 1, 2, and 3 illustrate the dispersion curves of the dilatational (I), flexural (II and III),
and torsional and shear modes (IV), respectively, for a GaAs square wire with cross-sectional



5756 N Nishiguchi et al

Figure 3. Dispersion curves of the torsional and shear phonon modes of a GaAs square wire
with cross-sectional dimensions 100Å×100 Å. The solid and chain lines denote the dispersion
curves of the torsional and shear modes, respectively. The dashed lines are the dispersion curves
of the bulk LA and TA waves along the [001] direction. The dotted line is the dispersion curve
of a torsional wave in a rod in the long-wavelength limit.

dimensions 100̊A × 100 Å, showing the phonon subband structures due to quantization of
wavevectors in the lateral direction. For this size of wire, and a maximum frequency of
0.5 THz,N was determined empirically to be 12. The number of basis functions used for
modes I, II, and III is 70, and for mode IV it is 63. It should be noted here that for square
wires the dispersion relations of the two flexural modes are degenerate. For a small value
of q, the lowest dispersion curves of the dilatational and torsional modes are proportional
to q, while the flexural modes show aq2-dependence. The parabolicity of the dispersion
relations of the flexural modes stems from the fact that these modes are bending modes,
similar to antisymmetric Lamb waves of a free plate [1], which can be analytically derived
[17] in the long-wavelength limit asω = q2√YIi/ρWH . HereY is Young’s modulus, and
Ii is the moment of inertia of the cross sectionIx = H 3W/12 about thex-axis for mode II
andIy = HW 3/12 about they-axis for mode III. The parabolic dispersion relation denoted
by the dotted curve in figure 2 reproduces the lowest dispersion curves of the flexural modes
below qW = 1. On the other hand, the propagation velocity of the lowest subband of the
dilatational mode is given by

√
Y/ρ, which is smaller than that of the bulk LA waves,√

C11/ρ. The dispersion curve in the long-wavelength limit is also plotted as the dotted
line in figure 1. The propagation velocity of the torsional mode yieldsv = √G/ρIz, where
G andIz are the torsional rigidity and the moment of inertia of the cross section about the
wire axis given byIz = Ix+ Iy , respectively. The dispersion curve is denoted by the dotted
line in figure 3. Thus the lowest dispersion curves show the peculiarities of vibrational
patterns of the normal modes.

For a largerq, or in a higher-frequency region, some dispersion curves of the dilatational
mode intersect, which does not occur for the other modes. The intersection comes about
because the dilatational mode consists of two independent modes: one is a simple dilatation
and contraction as shown schematically in figure 4(a), whose displacement vectoru is
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Figure 4. Schematic vibrational patterns of the dilatational mode: (a) the mode with the
rotational symmetryu = C4u shows the simple dilatation and contraction of the wire, while (b)
the mode withu = −C4u exhibits the alternate dilatation and contraction of the thickness of
the wire. The squares with dashed lines denote the undeformed cross section of the wire, and
the arrows denote the direction of displacement.

Figure 5. Dispersion curves of the dilatational phonon mode of a GaAs rectangular wire with
cross-sectional dimensions 28.3 Å × 56.6 Å. The solid lines denote the dispersion curves, and
the dashed lines are the dispersion curves of bulk LA and TA waves along the [001] direction.

transformed asu = C4u, with rotation of the wire byπ/2 about the wire axis, and the
other is the alternating dilatation and contraction of the thickness of the wire in thex- and
y-directions as shown in figure 4(b). The displacement vector is transformed asu = −C4u
for the same rotational operation. These two modes are independent for a square wire,
whose dispersion curves are denoted by the solid and chain lines in figure 1, respectively.
The crossing of the dispersion curves is peculiar to square wires. These modes are no longer
independent but are coupled for rectangular wires, inducing separation of their dispersion
curves. Figure 5 shows the dispersion curves of the dilatational mode of a wire with cross-
sectional dimensions 28.3 Å×56.6 Å, which was discussed in reference [10], showing that
all of the dispersion curves anticross at all of the frequencies studied.

Figure 6 shows the dispersion curves of the thickness and width modes of the wire.
The lowest subband of the width mode is almost the same as that of the dilatational mode.
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Figure 6. Dispersion curves of the thickness and width modes of a GaAs rectangular wire with
cross-sectional dimensions 28.3 Å × 56.6 Å. The solid and chain lines denote the dispersion
curves of the width and thickness modes, respectively. The dashed lines are the dispersion
curves of the bulk LA and TA waves along the [001] direction.

The phonon modes of the rectangular wires have been believed to be well described by the
approximate hybrid modes referred to as the thickness and width modes [15, 16], assuming
separable boundary conditions—in particular, for wires with cross-sectional aspect ratios
greater than two. We find poor agreement between the approximate hybrid modes and the
dilatational mode for subbands other than the lowest. From these results, we conclude that
the approximate hybrid modes are valid only for the lowest phonon subband.

Figure 7. Schematic vibrational patterns of (a) the torsional mode with the rotational symmetry
u = C4u and (b) the shear mode withu = −C4u. The torsional mode shows rotation of the
wire about the wire axis, and the shear mode exhibits alternating stretching in the two diagonal
directions. The squares indicated with dashed lines denote the undeformed cross section of the
wire, and the arrows denote the direction of the displacement.

Mode IV consists of the torsional and shear modes, as mentioned above. The vibrational
patterns of these modes are schematically illustrated in figures 7(a) and 7(b), respectively.
As can be understood from these figures, the displacement vector of the torsional mode
is transformed asu = C4u and that of the shear mode is transformed asu = −C4u by
rotation about the wire axis. Their dispersion relations are denoted in figure 3 by the solid
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and chain lines, respectively. In contrast to the case for the dilatational mode, although these
modes are independent for a square wire, there is no intersection of the dispersion curves,
at least below 0.5 THz. These two modes are not well defined for rectangular wires, but are
mixed. However, the effects of the mode mixing on the phonon subbands are expected to
be small, since their dispersions are separated and there is no degeneracy between them for
a square wire. On the other hand, the change in wire geometry modulates the mechanical
properties of the wires, such as the torsional rigidity and the moments of inertia, causing
modifications in the dispersion relations. As for the lowest subband, the dispersion curve
is lowered with increasing aspect ratio, and can be approximated, at smallq, by

ω = 2H

W

√
µ

ρ
q

for very flat rectangular wires, withW � H , whereµ is one of the Laḿe constants. In
addition, change in the wire thickness affects the lateral wavevector quantization. Hence
the dispersion relations of the higher subbands show a complicated dependence on the
cross-sectional aspect ratio to a greater extent than do the lowest subbands.

As for the flexural modes, the dispersion relations of modes II and III are no longer
degenerate for rectangular wires. The curvatures of the lowest subbands of modes II and III
at smallq are proportional toH andW , respectively. Interestingly, the dispersion relation
of the lowest subband of mode II (III) depends, even for a largeqW (H) (<10), only on
H (W ), as if the modes were Lamb waves in a free plate. In contrast, higher subbands
are affected by the change in the lateral wavevector quantization as well as that in the
mechanical properties of a wire, showing a complex dependence on the wire dimensions to
a greater extent than do the lowest subbands like those of mode IV.

4. Edge modes

Figures 1, 2, and 3 show that the lowest and the following two dispersion curves of all of the
modes fall below the dispersion curve of the bulk TA waves along the [001] direction with
increasingq, which leads to complex lateral wavevectors. As a result, acoustic waves will
decay exponentially in the directions normal to the edges or surfaces of the wires. Hence we
may expect the existence of edge or surface modes for largeq. To confirm that the vibrations
are localized at the wire corners or surfaces, we investigated the spatial distribution of the
squared displacement vectors|u|2. Figure 8(a) illustrates|u|2 for the lowest subband of the
dilatational mode atq = 8× 106 cm−1 of the square wire with cross-sectional dimensions
100 Å × 100 Å, showing a conspicuously large amplitude at the wire corners. A large
amplitude at the wire corners similar to that of figure 8(a) is also found for the second
and third subbands of the dilatational mode, the lowest and second subbands of the flexural
modes, and the lowest subbands of the torsional and shear modes. Figures 8(b) and 8(c)
show|u|2 for the lowest subbands of the flexural and torsional modes atq = 8×106 cm−1.
We refer to the modes with large amplitude at the corners as edge modes, although the
amplitude does not completely vanish between the wire corners, in contrast to the case
for edge modes localized at edges or steps of infinite crystals [18]. Completely localized
vibrations at the wire corners are found for huge wires or for extremely largeq.

In contrast to the case for the edge modes, we have not obtained any apparent evidence
of surface modes, since the lowest subbands exhibit the characteristic decay of edge modes,
as mentioned above. However, surface and edge modes should coexist for huge wires.
Hence, some of the edge modes are expected to change into surface modes with increasing
wire dimensions.
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Figure 8. The spatial distribution of|u|2 for the lowest subband at
q = 8×106 cm−1 for the (a) dilatational, (b) flexural, and (c) torsional
modes of a GaAs square wire of dimensions 100Å × 100 Å.

5. The phonon field

The acoustic phonon field is described in terms of annihilation operators(aJ ) and creation
operators(a†J ) of phonons as

uop =
∑
J

[
aJuJ + a†Ju∗J

]
(15)

provided that the normal phonon modesuJ satisfy the orthonormal condition∫
V

ρu∗J ′ · uJ dV = h̄δJ,J ′
2ωJ

(16)

as well as the completeness condition

ρ
∑
J

ωJuJ,i(r)uJ,j (r
′) = h̄

2
δi,j δ(r − r′). (17)

Here J denotes the phonon modes discussed above, the frequencies, and the longitudinal
wavevectors.
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The normal modes derived from equation (11) satisfy the orthogonality condition.
Considering thatΓ is a hermitian matrix andχJ is an eigenvector of equation (11) for
an eigenvalueω2

J , we obtain for two normal modesJ andJ ′

(ω2
J − ω2

J ′)χ
†
J ′EχJ = 0. (18)

For the non-degenerate case,ωJ 6= ωJ ′ , it is apparent that

χ
†
J ′EχJ = 0. (19)

On substituting equation (6) into (16) and integrating over the volume, the left-hand side
of equation (16) equalsVχ†J ′Eχ. Hence the normal modes are orthogonal for the non-
degenerate case. For the degenerate case,ωJ = ωJ ′ , we can demonstrate orthogonality, by
considering the spatial symmetries of the normal modes. As an example, let us consider the
case in which the dispersion curves of the dilatational modes intersect. As discussed above,
the crossing of the dispersion curves occurs for a square wire, and the normal modes have
distinct rotational symmetries along the wire axis, i.e.u1 = C4u1 andu2 = −C4u2. For
the square wire, the following equality for an arbitrary functionf (r) holds:∫

V

f (r) dr =
∫
V

[
C4f (r)

]
dr. (20)

Because the productu1·u2 changes its sign for the rotational operationC4, the integral over
the productu1 · u2 vanishes. Using the rotational symmetries and the parity of the normal
modes, we can also demonstrate orthogonality among the four kinds of normal mode when
their dispersion curves intersect, as for rectangular wires. Thus the orthogonality condition
(16) is proved to be satisfied.

Putting J = J ′, we obtain the normalization condition for the coefficientsχJ,iλ from
equations (6) and (16):

χ
†
JEχJ =

1

WHLw

h̄

2ωJ
(21)

whereLw is the wire length. The coefficientsχJ,iλ should satisfy the normalization condition
(21) as well as the eigenvalue equation (11) for the normalized phonon modes. In practice,
the coefficientsχJ,iλ obtained numerically from equation (11) are scaled up or down so that
they satisfy the normalization condition (21). Introducing a factorα (>0), we define the
displacement componentsuJ,i satisfying the normalization condition (16) by

uJ,i = αχJ,iλ8λ (22)

instead of (6). The factorα can be readily obtained by substituting equation (22) into (16),
and the normalized displacement componentsuJ,i are expressed by

uJ,i = 1√
WHLw

√
h̄

2ωJ

χJ,iλ√
χ
†
JEχJ

8λ (23)

in terms of the eigenvectorsχJ of equation (11) corresponding to the normal modes.
In contrast to the case for the orthogonality condition, it is difficult to prove the

completeness of the normal modes in terms of the solutions of equation (11). However,
completeness should be satisfied if all of the normal modes are included in the summation
of equation (17). In this work, we have investigated all possible phonon modes with spatial
symmetries related to a rectangular wire. We have confirmed the expected bulk modes and
have identified a previously overlooked edge mode. Therefore we anticipate that the normal
modes obtained in this paper satisfy the completeness condition (17).
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Thus the phonon field can be expressed in terms of the normalized phonon modes
(23) and their complex conjugates. The Hamiltonian of the phonons is diagonalized using
equations (15) and (23). These two equations can also be used to derive the deformation
and piezoelectric potential Hamiltonians, and the ripple mechanism [19, 20], as will be
discussed elsewhere.

6. Summary

The acoustic phonon modes of Q1D rectangular wires composed of cubic crystals have been
precisely derived by using thexyz-algorithm used in resonant ultrasound spectroscopy.
The acoustic phonon modes are classified according to their spatial symmetries into a
compressional mode termed the dilatational mode and non-compressional modes referred
to as the torsional, shear, and two flexural modes. The dispersion relations of the normal
modes were obtained for GaAs square and rectangular wires, exhibiting subband structures.
The lowest subbands of these modes reduce to the vibrational modes of a rod in the
long-wavelength limit, showing linear or parabolic dispersion relations with respect to
a longitudinal wavevectorq peculiar to each mode. There are intersections among the
dispersion relations of the dilatational mode because the dilatational mode is divided into
two independent modes for square wires. For a rectangular wire, mode coupling between
the dilatational modes and between the torsional and shear modes take place. The mode
coupling substantially modifies the dispersion relations of the dilatational mode, separating
their dispersion curves, while the coupling between the torsional and shear modes does not
have significance for phonon spectra, unlike the change in mechanical properties. We also
examined the validity of the approximate hybrid modes by comparing the dispersion relations
for a rectangular wire, and found that only the lowest subband can be well described by the
width mode. We confirm that the lowest subbands are the acoustic edge modes which decay
in the directions normal to the wire corners. Finally, applying the normalization condition
to the phonon modes, we formulated the phonon field.

In this paper we have demonstrated that the acoustic phonon modes of Q1D wires
with square and rectangular cross sections can be precisely derived. The method used is
general, and can be applied to free-standing structures with other cross-sectional profiles,
for instance triangular [6]. Experimental evidence for reduced-dimensionality phonons has
been reported for supported metal wires [7, 8]. The coupling of such wires to a substrate
will cause the phonon spectrum to be different from that of the free-standing wires reported
here. We anticipate that, with some modification, thexyz-algorithm will be applicable to
supported structures, which will enable a comparison to be made between the predicted and
observed phonon spectra. Work towards this application is under way, and will be reported
elsewhere.
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Appendix A. The matrix Γ

The matrix elements0iλ′;jλ are

01λ′;1λ = 4

W 2
C11mm

′F(m+m′ − 2; n+ n′)+ 4

H 2
C44nn

′F(m+m′; n+ n′ − 2)

+ C44q
2F(m+m′; n+ n′) (A1)

01λ′;2λ = 4

WH
(C12m

′n+ C44mn
′)F (m+m′ − 1; n+ n′ − 1) (A2)

01λ′;3λ = − 2i

W
q(C44m− C12m

′)F (m+m′ − 1; n+ n′) (A3)

02λ′;1λ = 4

WH
(C44m

′n+ C12mn
′)F (m+m′ − 1; n+ n′ − 1) (A4)

02λ′;2λ = 4

W 2
C44mm

′F(m+m′ − 2; n+ n′)+ 4

H 2
C11nn

′F(m+m′; n+ n′ − 2)

+ C44q
2F(m+m′; n+ n′) (A5)

02λ′;3λ = − 2i

H
q(C44n− C12n

′)F (m+m′; n+ n′ − 1) (A6)

03λ′;1λ = − 2i

W
q(C12m− C44m

′)F (m+m′ − 1; n+ n′) (A7)

03λ′;2λ = − 2i

H
q(C12n− C44n

′)F (m+m′; n+ n′ − 1) (A8)

03λ′;3λ = 4

W 2
C44mm

′F(m+m′ − 2; n+ n′)+ 4

H 2
C44nn

′F(m+m′; n+ n′ − 2)

+ C11q
2F(m+m′; n+ n′). (A9)

Appendix B. Displacement components

The displacement components are

ux =
2(r+s)+16N∑

r,s=0

χ1rs

(
2x

W

)2r+1(2y

H

)2s

eiqz (B1a)

uy =
2(r+s)+16N∑

r,s=0

χ2rs

(
2x

W

)2r(2y

H

)2s+1

eiqz (B1b)

uz =
2(r+s)6N∑
r,s=0

χ3rs

(
2x

W

)2r(2y

H

)2s

eiqz (B1c)

for mode I,

ux =
2(r+s)+26N∑

r,s=0

χ1rs

(
2x

W

)2r+1(2y

H

)2s+1

eiqz (B2a)

uy =
2(r+s)6N∑
r,s=0

χ2rs

(
2x

W

)2r(2y

H

)2s

eiqz (B2b)

uz =
2(r+s)+16N∑

r,s=0

χ3rs

(
2x

W

)2r(2y

H

)2s+1

eiqz (B2c)
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for mode II,

ux =
2(r+s)6N∑
r,s=0

χ1rs

(
2x

W

)2r(2y

H

)2s

eiqz (B3a)

uy =
2(r+s)+26N∑

r,s=0

χ2rs

(
2x

W

)2r+1(2y

H

)2s+1

eiqz (B3b)

uz =
2(r+s)+16N∑

r,s=0

χ3rs

(
2x

W

)2r+1(2y

H

)2s

eiqz (B3c)

for mode III, and

ux =
2(r+s)+16N∑

r,s=0

χ1rs

(
2x

W

)2r(2y

H

)2s+1

eiqz (B4a)

uy =
2(r+s)+16N∑

r,s=0

χ2rs

(
2x

W

)2r+1(2y

H

)2s

eiqz (B4b)

uz =
2(r+s)+26N∑

r,s=0

χ3rs

(
2x

W

)2r+1(2y

H

)2s+1

eiqz (B4c)

for mode IV.
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